			1				十成20千皮	
機械工学科			熱力学					
学年 第4学年		担当教員名						
		2単位	通年	週当りの開講回		』 必修		
単位数・期間		熱力学の基本的な事項の習得を通じて、熱エネルギの利用や転換や種々の 熱機関が熱力学の第一法則、第二法則などに支配されていることを学ぶ、 本講義により、学生は熱利用の方法・仕組みあるいは動力機関などの動作 原理の理解に加え、熱力学と環境問題の関わりについても理解できる。これにより実際の熱設計や熱処理の問題に適切に対応できる能力を身につけることができる。						
		釧路高専目標	C:	100%	JABEE目標	d-1-4	4	
履修上の注意 (準備する用具・前提とな る知識等)		数学および物理に関する基礎的な知識(例えば,ニュートンの運動法則, 微積分の初歩)を有すること.さらに演習問題に対応できる関数電卓が必要						
到達目標		熱管理士の問題の合格基準に達する程度の理解度を目指す、また5年生の 熱関連科目および進学先の大学の熱関連科目に十分対応できる力を身に つけることができる。						
成績評価方法		主として定期試験による評価を行う、合否判定は定期試験の平均が60点を超えていること、および最終評価は4回の定期試験を(90%),レポート (10%)の比率で行う.						
テキ	スト・参考書	教科書:工業熱力学通論,日刊工業新聞社,斉藤武ほか 参考書:工業熱力学,実教出版,宮部英也·斉藤孟						
難しい数式は扱わないが、分かりにくい性質の科目ではあるが、エネルギが関わる全ての問題を支配する法則を扱う分野であるので、授業内容の理解のための努力をして欲しい。								
授業項目				授業項目ごとの達成目標				
1.ガイダンス(1) 2.熱力学の歴史,産業との関わり(2) 3.エネルギの基本概念・内部エネルギ(1) 4.第0 法則(温度と熱平衡)(1) 5.熱量と比熱,単位系と単位(2)				・温度と熱量について説明できる。 ・エネルギの基本的な概念を身につけることができる。 ・温度や比熱など基本的な物理量の概念と単位につい て理解できる。				
前期中間試験				実施する				
6.熱と仕事,閉じた系の第一法則(2) 7.熱力学的平衡と準静的過程(1) 8.可逆過程と不可逆過程(1) 9.準静的過程における第一法則(1) 10.開いた系の第一法則(1) 11.理想気体における第一法則(1)			・熱と仕事の間の変換n 関係が理解できる. ・第一法則, 内部エネルギ, エンタルビについて理解 でき, また説明できる. ・理想気体の概念を説明できる.					
				実施する				
12.熱機関とカルノーサイクル(2) 13.閉じた系の第二法則(1) 14.エントロビ(4)			・カル/ーサイクルについて説明できる。 ・第二法則についての基本的な概念を理解できる。 ・エントロビの概念と変化量を計算できる。					
後期中間試験				宇施オス				
俊期中間試験 15.エネルギ有効利用・エクセルギ(2) 16.蒸気の性質・エンタルビ計算(2) 17.蒸気原動機(ランキンサイクル)(3)			実施する ・エネルギ有効利用の関連が理解できる. ・水の状態変化とエンタルピの変化を計算できる. ・ランキンサイクルの理解と熱効率の計算ができる.					
						 する		
欠州州/小叫《				天肥りる				